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We study the steady state of driven elastic strings in disordered media below the depinning threshold. In the
low-temperature limit, for a fixed sample, the steady state is dominated by a single configuration, which we
determine exactly from the transition pathways between metastable states. We obtain the dynamical phase
diagram in this limit. At variance with a thermodynamic phase transition, the depinning transition is not
associated with a divergent length scale of the steady state below threshold, but only of the transient dynamics.
We discuss the distribution of barrier heights, and check the validity of the dynamic phase diagram at small but
finite temperatures using Langevin simulations. The phase diagram continues to hold for broken statistical tilt
symmetry. We point out the relevance of our results for experiments of creep motion in elastic interfaces.
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I. INTRODUCTION

Disordered elastic systems are ubiquitous in nature. They
appear as interfaces such as magnetic1–4 or ferroelectric5,6

domain walls, contact lines,7 fractures,8,9 or as periodic struc-
tures, such as vortex lattices,10,11 charge-density waves,12 and
Wigner crystals.13 They all share the competition between
elastic forces that tend to order the system and the micro-
scopic disorder that seeks to distort its structure. This com-
petition manifests itself in the static properties, leading to a
roughness of the interfaces or a distortion of periodic order.

In addition, disorder leads to pinning and thus also affects
the dynamical properties. Indeed practically all the above
systems may be displaced through an external force �mag-
netic or electric field for magnetic or ferroelectric domain
walls, current for vortices, etc.�. The motion directly influ-
ences central observables of the system �e.g., magnetization
for magnetic domain walls, voltage for vortices, etc.�.

The static properties of disordered elastic systems are now
well understood. It has for example been established that
interfaces �on which we will focus in this paper� become
rough in the presence of disorder. The roughness is charac-
terized by an exponent �eq, which depends only on the uni-
versality class of the disorder, the dimension of the interface,
and the nature of the elastic forces. The dynamical properties
are less well characterized. At zero temperature, disorder
leads to the existence of a critical pinning force fc, the de-
pinning threshold, below which the interface is immobile,
and above which steady-state motion sets in. The dynamics
at finite temperature is even more difficult to analyze than
the zero-T behavior.

It has been particularly fruitful to consider the depinning
transition as a regular critical phenomenon, with the velocity
playing the role of an order parameter.14 In this framework,
the depinning transition appears linked to the existence of a
correlation length � which diverges at the depinning transi-
tion, and to the presence of critical exponents, both for this
length ���f − fc�−�dep and for the velocity v��f − fc��. For
zero temperature, the analogy of the dynamical depinning

transition with equilibrium critical phenomena has been
checked directly by numerical approaches and by analytical
techniques such the functional renormalization group.

How to extend the analogy with critical phenomena to
finite temperatures has not been completely evident. Mea-
surements of the thermal rounding of the depinning transi-
tion or observations of scaling for transient dynamics indi-
cate that these ideas carry over to finite temperature.15–17

However a direct study of the motion of such systems is very
difficult for forces below the depinning forces, at finite tem-
perature. Indeed in that case, the motion takes place by ther-
mal activation over barriers, leading to extremely long acti-
vation times. This renders numerical techniques such as the
molecular dynamics inefficient.

At finite temperature, the dynamics of a disordered sys-
tem is very difficult to simulate because of the high-
excitation barriers and the presence of thermal noise. Stan-
dard dynamical algorithms become very inefficient because
the system is frozen in a local minimum. Advanced dynami-
cal simulation methods, such as the BKL algorithm18 and its
variants cannot always be applied because the systems are in
fact equilibrated on some length scale, leading to a futility
problem:19,20 Not only does it take a long time to pass a
barrier, but before doing so, the system will have undertaken
a very large number of �futile� moves among local configu-
rations.

This problem can often be overcome in statics, where we
need not follow the very slow dynamics because observable
averages are given by the Boltzmann weight for each con-
figuration. For this reason, many methods �transfer matrix,
optimization algorithms, advanced Monte Carlo methods� al-
low one to characterize the thermodynamics of disordered
elastic systems with an effort polynomial in the system size.

Similarly, although analytical techniques such as the func-
tional renormalization group have been used with success to
investigate the motion at finite temperatures, they lead to
complicated equations that have been solved so far only for
the “creep” regime of very small forces f →0. Moreover,
these techniques rely on an expansion around four spatial
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dimensions and are, thus, not very well adapted to tackle
quantitatively realistic one- or two-dimensional interfaces.

In Ref. 21 we introduced a novel numerical method which
allows one to follow the motion of an interface at finite tem-
perature, without running into the above-mentioned difficul-
ties. This algorithm was used to demonstrate that the analogy
between the depinning and critical phenomena is incomplete.
In fact, the steady-state motion lacks the divergent length for
f → fc from below. In the present paper, we discuss the algo-
rithm in detail. We use it to study the various properties of an
interface close to depinning. In addition to the questions of
the steady-state motion and the corresponding divergent
length scales and the roughness of the lines, we study the
distribution of activation barriers during the motion. This is
crucial since disordered elastic systems are glasses, with a
priori divergent barriers. We also compare the results of our
algorithm to molecular-dynamics simulations, in order to
check that taking the T→0 limit before the thermodynamic
limit does not introduce artifacts.

The outline of this article is as follows: After a short re-
view, in Sec. II, of the statics and the zero-temperature dy-
namics of disordered elastic systems, we outline in Sec. III
the finite-temperature dynamical phase diagram obtained
with our method. Section IV discusses the special properties
of the low-temperature dynamics, which are used in the al-
gorithm, and Sec. V contains a detailed description of our
numerical results. A general discussion, including the pros-
pects for experiments in Sec. VI, concludes this paper. Tech-
nical details of the algorithm and several mathematical
proofs of key properties of the low-temperature dynamics are
contained in Appendix A, whereas Appendix B resumes sev-
eral properties of long-range elastic systems.

II. BASIC NOTIONS

In order to render our paper self-contained, we review in
the present section how the competition between disorder
and elasticity manifests itself in the statics and the zero-
temperature dynamics of elastic manifolds. We stress the dif-
ference between equilibrium properties and the nonequilib-
rium steady-state behavior. Furthermore, we introduce the
three “reference states,” the corner stones of our analysis of
the dynamical phase diagram of Sec. III.

A. Elastic manifolds

We consider a d-dimensional interface separating a
d+1-dimensional covering space into two regions. The inter-
face is free of overhangs or loops, and may thus be described
by a univalued displacement field h�x�. Figure 1 shows an
elastic string �d=1� in a two-dimensional random medium,
the case that we concentrate on in this paper.

The elastic energy Eel�h� is minimal for the flat manifold
h=const. For short-ranged elastic interactions, deviations
from this configuration are often described by the harmonic
energy

Eel�h� =
c

2
� ddx��xh�2 �1�

�with an elastic coefficient c�. This case applies to magnetic
and ferroelectric domain walls as well as to vortex lattices
and charge-density waves.

Dipolar forces,5,6,22 contact lines for wetting,23 and also
crack propagation24 represent the class of manifolds with
long-range elastic interactions. These systems are described
by different harmonic forms �see Appendix B�.

A second essential interaction is provided by the coupling
of the manifold to disorder. Two types of disorder correla-
tions have been much discussed in the literature: Random-
bond �RB� disorder corresponds to impurities that locally
attract or repel the interface �as for the wetting problem�. In
contrast, random-field �RF� disorder describes pinning ener-
gies which are affected by the impurities inside the entire
region delimited by the interface �Fig. 1�. This situation is
encountered for example in magnetic systems when impuri-
ties modify the local magnetic field. The disorder potential
Edis generated by the impurities in these two cases is given
by

Edis�h� =� ddx� V�h�x�,x� , random bond

�
0

h�x�

duV�u,x� , random field, � �2�

where for each value of x, the function V�u� is a short-range-
correlated Gaussian noise:

V�x,u� = 0,V�x,u�V�x�,u�� = �d�x − x��R�u − u�� , �3�

where the overbar stays for the average over all disorder
realizations and R�u� is rapidly decaying function.

A third interaction appears in the presence of an external
force. With strong intrinsic dissipation, the following over-
damped zero-temperature equation of motion applies:

��th = −
��Edis + Eel�

�h
+ f = c�x

2h + Fdis�h,x� + f , �4�

where � is a friction coefficient and Fdis is the pinning force.
For small external force f , the manifold ends up pinned in a
metastable state whereas it moves with finite velocity v at
larger force. The moving phase is separated from the pinned
regime by the critical force fc.

25

B. Self-affine reference states (T=0)

Three reference states are present in the velocity-force
diagram at zero temperature �Fig. 2�: the equilibrium �at f
=0�, the depinning �at f = fc�, and the fast flow �at f � fc�. In
these states, the manifold is spatially self-affine. This means
that lengths x and displacements h above a small cutoff �set

x x

h(x)h(x)

u u(a) (b)

FIG. 1. �Color online� An elastic string h�x� in a random me-
dium. �a� For random-bond disorder �RB�, its interaction with the
impurities is local. �b� For random-field disorder �RF�, the energy
Edis�h� depends on V�u ,x� for all u�h.
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by the size of the corresponding Larkin domain31� can be
rescaled as x�=bx and h�=b�h into a new interface h��x��,
which is statistically equivalent to h�x�. � is the state’s char-
acteristic roughness exponent. Even at finite temperature,
manifolds can be analyzed in terms of these reference states,
as we will discuss later.

1. Equilibrium (f=0)

The large-scale properties of elastic manifolds at equilib-
rium are independent of temperature26,27,32–34 because the
disorder remains relevant. Indeed, sample-to-sample fluctua-
tions of the ground-state energy grow with the system size L
as Egs�L	 with a positive exponent 	.

The values of �eq and 	 depend on the dimension d, the
range of the elastic interactions, and on the type of disorder
�RB or RF�, but they are not independent: In a system of size
L, the displacement h scales as L�eq, and the short-range elas-
tic energy as L2�eq+d−2 �see Eq. �1��. At equilibrium, the elas-
tic energy and the disorder contribution should scale in the
same way. This implies the scaling relation

	 = 2�eq + d − 2. �5�

The motion is governed by the minimal energy barriers be-
tween metastable configurations. The barrier between con-
figurations which differ over a size l is of order U� l
 for
large l, with a positive barrier exponent 
. This power law is
responsible for the logarithmically slow relaxation toward
equilibrium.35,36 The relation 
=	 is widely accepted37 �see,
however, Ref. 38 where 
=d /2 is proposed�.

2. Depinning (f= fc)

At the depinning threshold f = fc
+, the moving manifold is

self-affine both in space and in time. This means that dis-
placements h�t�−h�0� on scales x and at time intervals �t
are statistically equivalent to displacements on scales
a�dep/zdepx at times�at �here zdep is the dynamic exponent�.
We note that in equilibrium the logarithmically slow dynam-
ics prevents self-affinity in time.

Above the depinning threshold �f � fc�, the velocity van-
ishes with a characteristic exponent, v��f − fc��, and the
motion is characterized by avalanches of a divergent typical
size �,

� � �f − fc�−�dep. �6�

In the language of critical phenomena, the velocity plays the
role of the order parameter and the force the role of the
control parameter.14

The exponents �, �dep, �dep, and zdep are constrained by
scaling relations.39,40 The velocity of the manifold is related
to the characteristic time of an avalanche, t��zdep, and to the
distance the manifold advances during this time ��dep, as v
���dep−zdep. This yields a hyperscaling relation

� = �dep�zdep − �dep� . �7�

Depinning exponents depend on the dimension d of the
manifold and on the range of the elastic interactions but they
are independent of the type of disorder �RF or RB�, merging
the two equilibrium universality classes into one.41,42

Another scaling relation holds, both for depinning and
equilibrium, if the equation of motion preserves the statisti-
cal tilt symmetry �STS�.41 The tilt is a static force ��x� with
vanishing spatial average. If one adds a tilt to Eq. �4�, and
changes variables as h�x , t�→h�x , t�+�−2��x� or, in Fourier
space, h�q , t�→h�q , t�+q−2��q�, the same equation of motion
is recovered with a new realization of the same disorder. The
statistical properties of the manifold are unchanged and the
response function behaves like in the pure system
�h�q , t� /���q��q−2. Dimensional analysis of Eq. �6� implies
that the force � scales with the exponent −1 /�. On the other
hand, self-affine displacements h scale with the exponent �,
so that

� =
1

2 − �
. �8�

Statistical tilt symmetry is violated by a nonharmonic elastic
energy or by certain anisotropies of the random medium.
This violation is relevant at depinning where a universal be-
havior is observed.29,43,44 A phenomenological mapping has
been proposed between a one-dimensional string at the de-
pinning transition and directed percolation.45,46 A concrete
model belonging to this class contains elastic energies stron-
ger than harmonic, for example,

Eel�h� =� ddx	 c

2
��xh�2 + c4��xh�4
 , �9�

with c4
0.43 We note that the violation of statistical tilt
symmetry changes the universality class at depinning, but
not in equilibrium.

3. Fast flow (fš fc)

In the fast-flow reference state, for f � fc, the quenched
pinning force reduces to an annealed stochastic noise40 be-
cause in the co-moving frame, one has Fdis�h ,x�=Fdis��h
+vt ,x��Fdis�vt ,x�. For short-range correlated pinning force,
the strength of the disorder plays the role of an effective
temperature Teff, since

v

fc
f

eq
u
il
ib

ri
u
m

depinning

fas
t flo

w

FIG. 2. �Color online� Velocity-force characteristics of an elastic
manifold at T=0. The three self-affine reference states are: Equilib-
rium �f =0�; Depinning �f = fc�; Fast flow �f � fc�.
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Fdis�vt,x�Fdis�vt�,x�� � ��0���v�t − t�����x − x��

=
��0�

v
��t − t����x − x�� ,

where ��0� measures the disorder strength. Since dv /df
��−1 in this regime, it follows that Teff���0� / ��v� from a
generalized fluctuation-dissipation theorem. For the string,
the fast-flow state corresponds to the random walk. Critical
exponents for the three self-affine reference states are sum-
marized in Table I.

III. DYNAMIC PHASE DIAGRAM

At nonzero temperature, the manifold moves with finite
velocity for all forces f 
0, and the long-time dynamics
reaches a steady state, on which we focus in this work. Pos-
sible steady states are contained in a dynamical phase dia-
gram exhibiting, at different length scales, the three reference
states of Sec. II. Above threshold, this diagram is well un-
derstood in terms of the analogy with second-order phase
transitions.

The steady-state dynamics below threshold can be studied
by means of our powerful algorithm which exploits the spe-
cial properties of the dynamics �see Sec. IV�. This algorithm
yields a phase diagram which differs from the standard pic-
ture of a second-order phase transition.

A. Above threshold (f
 fc)

We first consider the region above the critical force where
a steady state exists even at zero temperature. Here the anal-
ogy of the depinning transition with critical phenomena is
well understood:14 As in a thermodynamic second-order
phase transition, the connected two-point correlation func-
tion of the order parameter is characterized by a correlation
length which diverges at the critical point. The steady-state
velocity is the order parameter of the depinning transition
and its two-point correlation function,

��v�x,t� − v��v�0,t� − v�� � e−
x
/�, �10�

indeed diverges for f → fc
+. Here, brackets stand for the ther-

modynamic �or steady-state� average. In practice, this corre-

lation function is not easily accessible because the steady-
state velocities necessitate the long-time integration of the
equation of motion.47

The correlation length � separates two length scales in the
manifold �see Fig. 3�a��: on scales smaller than �, the geom-
etry of the interface is characterized by the exponents of the
depinning reference state �the critical phase in the language
of magnetic transitions�. In contrast, on length scales larger
than �, the interface is governed by the exponents of the
fast-flow reference state �analogous to the ferromagnetic or-
dered phase of a magnetic transition�. The length � can be
measured47 through the structure factor,48

S�q� = �� 1

Ld/2� ddxh�x,t�e−iqx�2�
=� ddxe−iqx�h�x,t�h�0,t�� , �11�

where the second equality makes use of spatial translation
invariance. For inverse lengths q belonging to a self-affine
regime with a single roughness exponent �, the structure fac-
tor takes the form

S�q� � q−�d+2��.

The crossover between the depinning and the fast-flow re-
gimes can be conveniently extracted from the change of
slope of the structure factor S�q� �see Fig. 3�b��.

B. Below the depinning threshold

Below the depinning threshold �f � fc�, at zero tempera-
ture, the manifold is permanently pinned. We first discuss the
phase diagram in the limit of vanishing temperature, ob-
tained with the methods of Sec. IV. The limit of zero tem-
perature is taken after the steady state is reached. Techni-
cally, this means that we take the long-time limit t→�
before the zero-temperature limit T→0.

As in the regime above threshold, the structure factor al-
lows us to access the self-affine regimes present in the inter-
face. Our results from Sec. V are summarized in Fig. 4�b�. A
crossover length, Lopt, associated to the maximal barrier en-
countered across the optimal path along the system, separates
two roughness regimes: On length scales smaller than Lopt
the roughness of the interface is described by the equilibrium
exponent �eq, corresponding to the paramagnetic phase in the

TABLE I. Zero-temperature critical exponents for an elastic
string in the three self-affine reference states �equilibrium, depin-
ning, fast flow�.

f =0
RBa

f =0
RFb

f = fc

STSc
f = fc

no STSd
f � fc

EW
f � fc

KPZe

� 2/3 �1 �1.25 �0.633 1/2 1/2

z � � �1.5 1 2 3/2

� Eq. �8� Eq. �8� Eq. �8� �1.733

aReference 26.
bReference 27.
cReference 28.
dReference 29.
eReference 30.

(a) (b)
fc f

ξ

depinning

flow

S
(q

)

q2π/ξ

ζflow

ζdep

FIG. 3. �a� Zero-temperature dynamical phase diagram. �b�
Schematic structure factor for f 
 fc. The correlation length � fixes
the crossover between depinning and fast flow.
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language of magnetic transitions. For distances bigger than
Lopt, the roughness is described by depinning exponents �that
is, the exponent of the critical phase�. This is at variance with
standard critical phenomenon, where the critical phase ap-
pears at large length scales only at the critical point. Our
results are summarized in the phase diagram of Fig. 4�a�.
Increasing the external force, Lopt decreases and when the
depinning threshold is reached �f → fc

−�, Lopt coincides with
the Larkin length.31

Our algorithm cannot access very small forces, but our
results are compatible with predictions in the creep regime,
that is, at low temperatures for f � fc.

42,48–51 In this regime, a
phenomenological scaling argument suggests that the mean
velocity is produced by activated jumps on a length scale
which diverges in the equilibrium limit f →0 as Lopt� f−�eq.
At this length, the typical energy barriers scale as

U�f� � Lopt�f�
 � f−�, �12�

where �=
�eq is the creep exponent. The velocity-force
characteristics for small f is thus a stretched exponential. The
functional renormalization group42 predicts that on scales be-
low Lopt the system is in equilibrium and that scales larger
than Lopt are characterized by deterministic forward motion.

The structure factor at finite temperature is sketched in
Fig. 5�b�. It presents three roughness regimes: for length
scales smaller than Lopt, the interface is in equilibrium. Be-
tween Lopt and �, it is characterized by depinning exponents,
and for larger lengths it is in the fast-flow regime. At finite
temperatures, the two crossover lengths Lopt and ��Lopt di-
verge as f →0 �see Fig. 5�a��. While ��f ,T� diverges for T
→0 below the depinning threshold �see Fig. 3�a��, we find

that Lopt�f ,T� saturates to a finite value Lopt�f ,T=0�. The
phase diagram of Fig. 5�a� exhibits the connection between
depinning and equilibrium.

IV. T\0 DYNAMICS FOR FINITE SAMPLES

In this section, we discuss the detailed properties of the
dynamics below threshold in the zero-temperature limit for a
finite sample. We call this the “Arrhenius limit” because the
time �t to overcome an energy barrier U is governed by the
Arrhenius formula �t�exp�U /T�. We show in the present
section that in this limit the steady-state dynamics is charac-
terized by a forward-moving sequence of metastable states of
decreasing energy, which we are able to compute using the
exact algorithm described in Appendix A. Moreover, below
threshold, for each value of the external force, a unique
dominant configuration is occupied with probability one, in
the same way as for a finite system at equilibrium the occu-
pation probability is entirely concentrated on the ground
state.

Ordered sequence of metastable states

We first consider two metastable configurations � and � at
a fixed force f . A path P�→� connecting � with � is a se-
quence of configurations labeled with the time parameter t,
as prescribed by the dynamics of the system, for example a
discrete rule on a lattice, or a continuum Langevin prescrip-
tion. The path barrier P�→� between � and � is given by

B�P�→�� = max
t

E���t�� − E��� , �13�

and the barrier between the two metastable configurations,
B�→�, is defined as the minimal path barrier over all paths
connecting � with �. In the Arrhenius limit, the escape time
from a metastable state � is dominated by the minimal bar-
rier �Eesc.���� connecting � to a configuration with lower
energy,

Eesc��� = min
�

B�→�, with E��� � E��� .

The previous properties suggest the definition of a coarse-
grained dynamics characterized by a sequence of metastable
states, �0 ,�1 , . . . ,�k of decreasing energy connected by the
minimal barriers Eesc �see Fig. 6 and Fig. 7�. The transition
from �k to �k+1 is irreversible. This does not mean that from
�k+1, the microscopic dynamics cannot visit �k again, but
rather that escape paths from �k+1 toward a new configura-
tion �k+2 with yet lower energy exist. In fact, as shown in
Appendix A, the escape path can be implemented entirely
with forward-moving steps, in the same way as for the zero-
temperature motion relevant in the depinning problem.52,53

The same has been pointed out54 for the Sinai model, where
the effective dynamics involves forward moves only.

The sequence of metastable states has two remarkable
properties. First, all configurations situated between configu-
rations �k and �k+1 have smaller escape energies than the
configuration �k itself. Second, if in the backward direction,
no metastable configuration exists which lowers the energy
of �, then the coarse-grained dynamics starting from � is

(a) (b)
fc f

depinning

equilibrium

L
o
p
t

S
(q

)

q2π/Lopt

ζeq

ζdep

FIG. 4. �a� Dynamical phase diagram for f � fc in the limit of
vanishing temperature. �b� Schematic structure factor for f � fc. The
length Lopt fixes the crossover between equilibrium and depinning.

(a) (b)
ffc

ζflow

ζdep

ζeq

L
o
p
t,

ξ

S
(q

)

q2π/Lopt2π/ξ

equilibrium

depinning

flow

FIG. 5. �a� Dynamical phase diagram at finite temperature. �b�
Schematic structure factor below fc. The correlation length � fixes
the crossover between depinning and fast flow, and the length Lopt

the crossover between equilibrium and depinning.

CREEP DYNAMICS OF ELASTIC MANIFOLDS VIA EXACT… PHYSICAL REVIEW B 79, 184207 �2009�

184207-5



always forward moving. These two properties �proved in Ap-
pendix A 2 and Appendix A 3� imply that the steady-state
coarse-grained dynamics is always forward directed. Further-
more, the metastable configuration characterized by the larg-
est Eesc belongs to the sequence of configurations of the
coarse-grained dynamics. This is the dominant configuration
which, as discussed above, is occupied with probability one
in the Arrhenius limit. Finally, the steady state of a sample
with periodic boundary conditions describes a periodic tra-
jectory of metastable configurations, which is independent of
the initial configuration. These properties are analogous of
the one-dimensional problem of a particle on a ring, which
has been solved exactly.55,56

The details of the algorithm are given in Appendix A. It
enumerates a complete set of dynamically relevant configu-
rations. For driven manifolds, this approach is simpler than
in general19 because the excited configurations differ from
the metastable configuration on a length scale Lopt, which
remains finite for L→�. In addition, we can restrict our-
selves to forward moves.

In Fig. 8 we compare the characteristic configurations of
the low-temperature dynamics: the dominant configuration,
the ground-state, and the depinning critical configuration.
These three configurations are the dominant states for f =0,
0� f � fc, and f = fc, respectively. Our algorithm accesses
also the configurations � and � sketched in Fig. 8: configu-
rations � and � differ on a length Lopt, and � and � differ on
a length Lrelax. Lopt and Lrelax are the characteristic dynamical
lengths in the Arrhenius limit.

V. NUMERICAL RESULTS

Our algorithm determines, for each sample, the dominant
configuration, the escape barrier Eesc, and the size of the
optimal thermal excitation Lopt, as well as the size of the
deterministic avalanche Lrelax �see Fig. 8�. These results are
also compared with the results obtained by other methods at
finite and at zero temperature.

A. Analysis of the dominant configuration

We first consider the random-bond elastic string with sta-
tistical tilt symmetry. Complementing results of Ref. 21 we
show in Fig. 9 the collapse of the structure factor of the
dominant configuration at different forces, with all lengths
rescaled by the disorder-averaged size of the thermal excita-
tion, Lopt, which is obtained directly from the simulation. The
remarkable quality of the collapse �which is free of adjust-
able parameters� is also due to the fact that the control pa-
rameter f / fc, for each sample, is obtained with the sample-
dependent critical force.

In Fig. 9, the change of regimes between the small-q re-
gion �governed by depinning� and the large-q regime �domi-
nated by equilibrium� is manifest. We note that Lopt charac-
terizes the steady-state dynamics below fc in the Arrhenius
limit in the same way as � does above the depinning
threshold.14,47

FIG. 6. Sequence of metastable configurations �. . . ,�k ,�k+1 , . . .�
detected by our algorithm. For clarity, �k+1 is advanced by a small
amount with respect to �k.

αk

αk

β

β

αk+1 αk+1

en
er

gy

Eesc

path

FIG. 7. Escape path from a metastable configuration �k via a
configuration � that relaxes toward a new metastable configuration
�k+1 of lower energy.

FIG. 8. Ground-state, critical and dominant configurations be-
low fc. An excitation of size Lopt escapes the system from the domi-
nant configuration �. The configuration � relaxes to the metastable
state � via an avalanche of size Lrelax.

FIG. 9. Rescaled structure factor of the harmonic string in the
Arrhenius limit �averaged over 1000 disorder realizations� for L
=16,32,64,128.
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We now consider the model with a hard metric constraint,
which violates STS. This case is particularly interesting be-
cause the equilibrium roughness exponents are identical,
whereas the depinning exponents differ strongly. Moreover,
in one dimension, the STS depinning exponent is unphysical
��dep�1.25
1�, and will probably not be observable in na-
ture.

In Fig. 10, we show the structure factor for the model
with hard metric constraints as a function of the force, from
the statics, f =0, to the depinning, f = fc. The small-q region
is again consistent with the depinning roughness exponent,
and at large-q, we recover once more the equilibrium behav-
ior. However, the collapse of the curves for different values
of f / fc is not possible because the two exponents are now
very close in value. The crossover between the two regimes
no longer depends on the length scale Lopt alone, but also on
the microscopic parameters for which the string senses the
presence of anharmonic corrections to the elastic energy, that
is, when �hi+1−hi�2�1.

In the absence of STS, the roughness exponents at equi-
librium and at depinning are very close ��dep�0.63 against
�eq=2 /3�. However, the physics is very different in the two
regimes and reliable signals of the no-STS depinning regime
are present when a tilt is applied. A tilt can be realized
through a shift s ·L imposed on the interface boundary con-
ditions �i.e., hL=h0+s ·L and 0�s�1�. Following Ref. 57
the roughness exponent for a tilted interface will differ from
that of an untilted one, and for a tilted string it is expected to
be �tilt=0.5.58 In Fig. 11 we show the structure factor for the
model with hard metric constraints in presence of a tilt s
=0.5. In the statics, f =0, the tilt has no effect. For f 
0 we
observe that tilted interfaces, at large length scales become
less rough than untilted ones, in good agreement with �tilt
�0.5. This analysis confirms that in the creep regime the
large-scale structure of the string is described by determinis-
tic processes belonging to the corresponding depinning uni-
versality class of the system, regardless of the violation of
the STS symmetry.

B. Barriers

In the Arrhenius limit, the velocity of the interface de-
pends only on the barrier height. Assuming a narrow distri-

bution of barriers, we can relate the mean velocity of the
interface to the typical barrier U�f�,

v�f� = Lopt
�eq�Lrelax

Lopt
��dep

e−�U�f�. �14�

In the creep regime, when f is very small, we have Lrelax
�Lopt and U�f� is given by Eq. �12�. The phenomenological
expression for the velocity at low forces is the stretched ex-
ponential of the creep formula42,48–51

v�f� � exp�− ��fc/f��� . �15�

Our algorithm yields the escape barrier from the dominant
configuration. For a proper scaling59 of the sample dimen-
sions L�L�dep, we may identify this barrier with the charac-
teristic barrier U�f� and test the phenomenological argument
of Eq. �15�. In Fig. 12 we see that U�f� increases with de-
creasing f . This is consistent with the phenomenological ar-
guments leading to Eq. �12�, even if we cannot determine the
exponent �, because of the shortcomings of our algorithm at
very small driving forces.

In Fig. 13, we show the barrier distribution as a function
of the size L for samples scaled properly as L�L�dep. The
decay of the distribution for large U appears faster than ex-
ponential. Clearly, the distribution becomes narrower as the
system size is increased. Extrapolation of these results for an

FIG. 10. Steady-state structure factor for a string with hard met-
ric constraint in the Arrhenius limit �averaged over 10 000 disorder
realizations� for L=M =64. Curves for different forces are shifted
for clarity.

FIG. 11. Steady-state structure factor for a tilted string with hard
metric constraint in the Arrhenius limit �averaged over 1000 disor-
der realizations� for L=M =512,256. Curves for different forces are
shifted for clarity.

FIG. 12. Mean escape barrier U from the dominant configura-
tion for samples L�L�dep with L=32,64,128 �the line is a guide to
the eye�.
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infinite system leads to a well-defined value of U�f�, con-
firming the phenomenological assumption of a typical barrier
size.

C. Finite temperature

Our algorithm of Sec. IV is powerful, but it takes the T
→0 limit before the thermodynamic limit. For a macroscopic
physical system, the order of these limits should be inter-
changed. To confirm that the order of limits does not affect
physical properties, we have thus performed Langevin simu-
lations of the equation of motion Eq. �4� at small finite tem-
peratures with parameters �=c=1 and with random-bond
disorder from a normal distribution interpolated with a cubic
spline, as in Ref. 60.

In the inset of Fig. 14, we show S�q� for the steady-state
motion of the string at T=0.05 for different forces around fc.
Two regimes are always present. They correspond to the de-
pinning at small scales and the flow regime at large scales.
The crossover between these regimes corresponds to the cor-
relation length ��f� of Fig. 5. In the main panel of Fig. 14 we
have collapsed all data at small q by using the scaling
S�q� /S�2� /���G�q�� with a fitting parameter �.

The collapse of Fig. 14 provides the correlation length �
as a function of force and temperature, and we show it in Fig.
15 as a function of the reduced force f / fc for different T .�
decreases monotonically with f , and tends to diverge near fc

in the T→0 limit, showing that � is ultimately controlled by
the velocity of the string. This behavior is fully consistent
with the schematic phase diagram of Fig. 5.

In summary, the Langevin simulations confirm the sce-
nario valid for low-temperature Arrhenius dynamics for finite
T. We find no indication of a divergent �or even increasing�
correlation length as we approach fc

−. The main modification
at finite T is that � diverges at f =0 instead of at fc since this
divergence is controlled by the vanishing of the steady-state
velocity.

D. Deterministic avalanches below fc

In the previous sections we considered two length scales
below threshold, namely, the size Lopt of the optimal thermal
excitation and the correlation length � above which the dis-
order acts effectively as a thermal-like noise. Both lengths
appear in steady-state quantities, such as the structure factor
S�q� or the velocity v of the interface.

Another length scale, Lrelax can be identified as the typical
size of the deterministic avalanche that drives the interface
from the optimal activated jump of size Lopt to the next meta-
stable state.

Lrelax thus measures the distance between consecutive
metastable states. As shown in Fig. 16, Lrelax−Lopt diverges
approaching fc from below, with the characteristic exponent
�dep. However, Lrelax does not describe steady-state properties
below the depinning threshold, and represents no genuine
divergent length scale below the dynamic phase transition.

FIG. 13. Distribution of U for 11 000 disorder realizations
�samples L�L�dep with L=8,16,32�. The width of the distribution
decreases with increasing L.

FIG. 14. Finite-temperature steady-state structure factor from
Langevin simulations of an harmonic string of size �L ,M�
= �1024,2048�. The inset shows S�q� for T=0.05 and f / fc

=0.8,0.85, . . .1.2. The crossover length � is a fit parameter for the
collapse in the main panel.

FIG. 15. � as a function of f for a string of size L=1024 and for
different T increasing from the top to the bottom �T
=0.0025,0.005,0.01,0.025,0.05,0.075,0.1,0.15,0.2�.

FIG. 16. Behavior of the dynamical length Lrelax. This length
diverges with the exponent �dep �see inset�. The string sizes are L
=16,32,64,128 for f / fc= �0.2,0.25�,�0.3–0.4�, �0.5–0.75� �0.8–
0.9�, respectively.
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A length scale analogous to Lrelax appears also in the tran-
sient dynamics at T=0 for an initially flat configuration
which relaxes up to the first pinned metastable state.28,61–63

Here, a crossover separates the large length scales, keeping
memory of the initial condition from the short length scales
characterized by the depinning roughness exponent. This
length scale diverges with the same exponent �dep as Lrelax.
We can identify it with Lrelax−Lopt.

VI. DISCUSSION AND CONCLUSIONS

We have studied in this paper the low-temperature dy-
namics of a driven elastic string in a disordered medium
below the depinning threshold. In the �Arrhenius� limit of
vanishing temperature, and at large scales, the string behaves
as at the critical force �f = fc�, and it shows the universal
properties of the depinning transition. This result contradicts
the quasiequilibrium picture of the creep motion, which as-
sumes that a small force simply moves the system from one
metastable equilibrium state to another, without changing the
geometrical properties of these states.49 It also demonstrates
that the analogy of the depinning transition with equilibrium
critical phenomena is incomplete. The effect of even a small
force �f � fc� is in fact more radical: it drives the system
away from the equilibrium and into the depinning regime.
The equilibrium behavior of the string is restricted to small
scales. The crossover between the depinning and the equilib-
rium regimes takes place at the length scale Lopt of the opti-
mal barrier. At the critical force, Lopt does not diverge, and it
equals the corresponding Larkin length. Lowering the force,
Lopt increases, diverging in the limit of vanishing force. Our
findings are compatible with the functional renormalization
group �FRG� predictions.42

To arrive at these conclusions, we have used a powerful
algorithm, which is exact under the condition that the T
→0 limit can be exchanged with the thermodynamic limit.
We have also checked its conclusions with conventional
Langevin simulations. At finite temperature, a much larger
length scale � is introduced by the finite velocity of the sys-
tem. Length scales above � are described in terms of the
universal fast-flow regime.

The approach of the critical force is not characterized by a
divergent length scale of the steady-state properties. Never-
theless, a divergent length scale Lrelax at fc describes the typi-
cal size of the deterministic avalanches that are triggered by
the activated events. This deterministic part of the motion
does not affect the steady-state geometry and can for ex-
ample not be identified in snapshot of the line’s positions.

The distribution of barriers is narrow and the typical bar-
rier grows with decreasing the drive, in agreement with phe-
nomenological arguments. This shows that the motion is con-
trolled by the typical barriers, yielding a finite steady-state
velocity, rather than by rare barriers described by extreme
value statistics.64

We conjecture that our conclusions remain valid for
d-dimensional manifolds moving in d+1-dimensional space
with short-range or long-range elasticity. Moreover, the vio-
lation of the statistical tilt symmetry changes only the large-
scale geometry according to the change of the universality

class at the depinning transition. This may be relevant for the
interpretation of creep experiments in thin magnetic films1,4

since systems violating STS display a depinning roughness
which is very close to the equilibrium one.

Our results may apply to different experiments probing
the creep motion of elastic interfaces. We expect that an ex-
perimental verification of our results is possible using, for
instance, imaging techniques for magnetic1,3,4 or electric5,6

domain walls in thin films: Lopt could be extracted from the
analysis of a spatial correlation function, and Lrelax could be
measured by comparing consecutive �long-lived� metastable
states when f is close to fc since then Lrelax controls the
distances between successive metastable states. Due to its
transient nature Lrelax could be also measured by transient
methods at T=0, where we relax an uncorrelated initial con-
dition until it locks to the first metastable state at a given
force.

Steady-state noise measurements �such as acoustic emis-
sion noise� below the threshold could also provide an indi-
rect verification of our results. We expect the force depen-
dent barriers shown in Fig. 12 to control the waiting times
between events associated with deterministic avalanches of a
diverging size Lrelax, translating into large noise peaks. This
situation could be realized in ferromagnets65 or in material
failure.66,67
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APPENDIX A: ALGORITHMIC DETAILS

Our algorithm computes the dominant configuration of an
elastic string moving on a two-dimensional discrete L�M
lattice with periodic boundary conditions both in L and in M.
The line is described by the variables h�i�, giving the dis-
placement of the string on the slice i, with 0� i�L. The
energy of the line is given by

E = �
i

1

2
�h�i + 1� − h�i��2 − fh�i� + V�i,h�i�� . �A1�

Periodic boundary conditions in M are accounted for by the
periodicity of the disorder potential: V�i ,h�=V�i ,h+M�. Be-
sides the harmonic elastic energy �which preserves STS�, we
also consider a hard metric constraint,


h�i� − h�i − 1�
 � 1, �A2�

which violates STS.
We use elementary moves of the “variant Monte Carlo”

�VMC� algorithm of Refs. 52 and 43 which allows for the
simultaneous motion of k+1 adjacent sites by one lattice
spacing if no move of k sites is energetically favorable. This
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choice of dynamics avoids certain pathologies of the single-
site dynamics.43,52

For each sample of the disorder potential, the equilibrium
ground state,26,33 the critical depinning force fc, and the as-
sociated zero-temperature configuration at fc �Refs. 43 and
52� can be computed easily.

Below threshold, two kinds of motions are present: the
first is deterministic, as defined by the VMC algorithm, and it
relaxes each unstable configuration toward a metastable
state. The second is the activated dynamics connecting �k to
�k+1 through the sequence of VMC moves belonging to the
optimal path, which is characterized by the barrier Eesc��k�.

1. Complete-enumeration scheme

We initialize the dynamics from the equilibrium ground
state, which by its very nature cannot relax through back-
ward moves when the external force is positive. This allows
us to restrict our attention to forward moves only �see Ap-
pendix A 3�. At a given external force, we let the ground
state relax toward the metastable configuration �0. For each
transition �k→�k+1 we build the archive of the visited con-
figurations, �i, with increasing energy E��1��E��2�
�E��3�� . . .. A constant Ecut is also introduced in order to
compute E��k�. The archive is initialized with a single con-
figuration, �1=�k, and Ecut is set to zero. At each step the
configuration �1 is taken and erased from the archive. Two
operations are performed on this configuration. First, we up-
date the maximal barrier

Ecut = max�Ecut,E��1� − E��k�� .

Second, we relax �1 under the VMC dynamics to a configu-
ration ��. All configurations connected to �� by VMC moves
are incorporated to the archive. If �� has lower energy than
�k, the construction ends and the barrier Ecut as well as the
last configuration erased from the archive �1 and its associ-
ated metastable state, �� are output.

We can identify all the quantities defined in the previous
sections,

�k+1 = ��,

Eesc��k� = Ecut,

Lopt��k� = �
i

��h�1
�i� − h�k

�i�� ,

Lrelax��k� = �
i

��h���i� − h�k
�i�� , �A3�

where ��x� is the step function with the prescription ��0�
=0. Let us remark once again that for each realization of
disorder we analyze the data corresponding to the configura-
tion with the maximum value of Eesc. In Fig. 17 we sketch
the output of our algorithm for a small sample at different
driving forces.

2. Bound on escape energies

In this section, we show that all configurations between
the metastable configurations �k and �k+1 have smaller es-

cape energies than the configuration �k itself. This assures
that the coarse-grained dynamics must pass through the
metastable configurations with the largest barrier.

Let us consider a configuration � which moves to � in
order to pass through the minimal escape barrier Eesc�. We
show that any configuration � with h��x��h��x� �∀x� and
with an energy barrier Eesc��Eesc� satisfies h��x��h��x� �∀x�.

We suppose that the property is not true which means that
h��x��h��x� for some x. We follow the dynamical evolution
of the line ��t� and compare it with the evolution of two sets
of configurations. The first one, ���t�, is defined as

h���t��x� = �h��x� , if h��t��x� 
 h��x�

h��t��x� , otherwise.
� �A4�

The second one, ���t�, is defined as

h���t��x� = �h��x� , if h��t��x� � h��x�

h��t��x� , otherwise.
� �A5�

We start by comparing ��t� and ���t�. Because of the meta-
stability of � we expect that, initially, E����t���E���t��.
However, this situation cannot continue up to tend because,
by definition, ��t� is the path which encounters the smallest
barrier. We call t̃ the smallest time at which

E���t̃�� � E����t̃�� . �A6�

Using the decomposition of Fig. 18, for t= t̃, we can write

E���t̃�� − E����t̃�� = E��1�t̃�� − E��1�t̃��

+ �Eel����t̃� → ��t̃�� ,

where the variation of elastic energy is understood as

�Eel����t̃� → ��t̃�� = Eel��1�t̃�,�2�t̃�� − Eel��1�t̃�,�2�t̃�� .

Let us now compare the energy associated to the configura-
tion ���t̃� to the energy associated to the metastable state �,

E����t̃�� − E��� = E��1�t̃�� − E��1�t̃�� + �Eel�� → ���t̃�� .

The convexity of the elastic energy assures that

FIG. 17. Metastable states of the low-temperature in a �L ,M
=32,64� system, for different forces f � fc. The dominant configu-
ration is emphasized.
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�Eel�� → ���t̃�� � �Eel����t̃� → ��t̃�� . �A7�

Using Eq. �A6� we conclude that E����t̃���E���. All paths
connecting � with ���t̃� must overcome at least a barrier
E�

esc. This means that there exists a time t� �0� t�� t̃� for
which E����t���−E����E�

esc. We can use the usual energy
decomposition also for the configuration visited at the time t�

�see Fig. 18 for t= t��. The following inequality it is easy to
prove:

E����t��� − E��� � E���t��� − E����t��� . �A8�

This implies

E���t��� � E����t��� + E�
esc. �A9�

On the other hand

E��� � E����t��� . �A10�

It follows that

E���t��� − E��� 
 E�
Esc.. �A11�

This contradicts the initial assumption, demonstrating that all
configurations between the metastable configurations �k and
�k+1 have smaller escape energies than the configuration �k
itself.

3. Effective forward motion

In the present section we prove the following statement: If
there is no metastable configuration which lowers the energy
of � in the backward direction, the coarse-grained dynamics
starting from � will be forever forward directed. In other
words, there exists an escape path starting at � involving
only forward motion. This allows us to restrict the search of
new configurations, and reduces the complexity of our algo-
rithm. It also allows us to discard the archive of accumulated
configurations whenever a new metastable minimum con-
figuration is encountered.

We suppose that the above statement is false by assuming
that the configuration � relaxes toward a configuration �
such that, for some x, we have h��x��h��x�. Due to the
convexity of the elastic energy we may restrict ourselves to
the region where the relaxation is strictly backward and
h��x��h��x� for all x. The stability of � with respect to
backward movements imposes

h��x� � h��x� � h��x� ∀ x . �A12�

The energies associated to these configurations satisfy

E��� 
 E��� 
 E��� . �A13�

We now show that given Eqs. �A12� and �A13�, there exists
a configuration �1 for which

h��x� � h�1
�x� � h��x� ∀ x ,

E��� � E��� 
 E��� 
 E��1� . �A14�

In analogy with Appendix A 2 we can compare the evolution
of ��t�, ���t�, and ���t� defined in Eqs. �A4� and �A5�. The
configuration �1 corresponds to ���t̃�, where t̃ is the smallest
time at which

E���t̃�� � E����t̃�� . �A15�

This construction can be applied to configurations �2 ,�3 , . . .
up to �n=�. In this case we have E��n�=E��� and the state-
ment is shown to be correct.

APPENDIX B: LONG-RANGE ELASTICITY

For interfaces with long-range interactions, the elastic en-
ergy can be written in compact form in the harmonic ap-
proximation,

Eel =� ddq
q
�hqh−q. �B1�

Here, the parameter � controls the range of the interactions.
The standard short-range interaction corresponds to �=2.
The long-range interactions acting on the contact line of a
liquid meniscus23 and on a propagating crack front24 yield
�=1.

We expect the general scenario presented in this paper to
remain valid for the long-range case. The numerical values
of the universal exponent should depend on the range of the
elastic interactions, parameterized by �.

The scaling relations discussed in this paper can be ad-
justed to the case of general �. From a dimensional analysis
of Eq. �B1� we infer the generalization of Eq. �5�

	 = 2�eq + d − � . �B2�

The four exponents of the depinning transition are still con-
strained by the hyperscaling relation Eq. �7�. In presence of
STS, the argument given for �=2 holds and the response
function is given by �h�q , t� /���q��q−�. The STS scaling
relation writes

φ2

φ2

α2(t)

α2(t)

α1(t)φ1

FIG. 18. Decomposition of a configuration ��t� as a sum of
�1�t� and �2�t�, the configuration � by the sum of �1 and �2, the
configuration ���t� by the sum of �1 and �2�t�, and the configura-
tion ���t� by the sum of �1�t� and �2.
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� =
1

� − �
. �B3�

A real-space representation of Eq. �B1� involves fractional
derivatives.68

A discrete version of the force derived from Eq. �B1� is
given by60,69

fel�h�i�� = �
j�i

h�j� − h�i�

i − j
1+� . �B4�

It presents strong finite-size effects for ��2 and all choices
�
2 correspond to the standard Laplacian force. It is more

convenient68 to use the following discretized force:

fel�h�i�� = �
j�i

A�
i − j
��h�j� − h�i�� �B5�

with

A�
i − j
� =
��
i − j
 − �

2 ���� + 1�

���
i − j
 + 1 + �
2 � sin��

2
�� , �B6�

where ��x� is the Gamma function. This discretization holds
for all �
0, and it is unaffected by slowing down for �
�2.
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